An *In Vivo* *C. elegans* Model System for Screening EGFR-Inhibiting Anti-Cancer Drugs

Young-Ki Bae1, Jee Young Sung2, Yong-Nyun Kim1, Sunshin Kim3, Kyeong Man Hong4, Heung Tae Kim5, Min Sung Choi6, Jae Young Kwon6, Jaegal Shim1*

1 Comparative Biomedicine Research Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea, 2 Pediatric Oncology Research Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea, 3 New Experimental Therapeutics Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea, 4 Cancer Cell and Molecular Biology Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea, 5 Center for Lung Cancer, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea, 6 Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea

Abstract

The epidermal growth factor receptor (EGFR) is a well-established target for cancer treatment. EGFR tyrosine kinase (TK) inhibitors, such as gefitinib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefitinib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The *C. elegans* EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from *C. elegans* to humans. To develop an *in vivo* screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK), a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R]), or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R]) in *C. elegans* vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv) phenotype in a wild-type *C. elegans* background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor) and U0126 (a MEK inhibitor) were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic *C. elegans* expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

Introduction

Development of a high-throughput, low-cost *in vitro* screening system for small molecule anti-cancer reagents would ideally be able to overcome the major problems of conventional *in vitro* screening methods. Due to fast generation time, high progeny numbers, low cost, and well established genetic tools, the nematode *Caenorhabditis elegans* (*C. elegans*) is an attractive candidate for an animal model screening system, with many of the advantages of *in vitro* screening systems and animal models [1].

EGFR is overexpressed or aberrantly activated in various types of human cancer, such as breast, ovarian, and non-small-cell lung carcinoma (NSCLC) [2]. EGFR is involved in various steps of cancer development including tumorigenesis, invasion, metastasis, and angiogenesis [3], and thus provides an attractive target for cancer drug development. Gefitinib (Commercial name: Iressa) was the first EGFR-TK inhibitor drug developed for the treatment of epithelial cancers such as NSCLC [4]. Mutations in the EGFR-TK domain have been linked to gefitinib sensitivity in a subset of lung cancers, and have also been found to activate anti-apoptotic pathways [5,6].

C. elegans vulval development is a well-established model system used to study the EGFR signaling pathway [7–9]. Among the six vulval precursor cells (VPCs), P5.p, P6.p, and P7.p adopt the 2°-1°-2° cell fates, respectively, and continue dividing to form the mature vulva. The 1° cell fate is determined as a result of EGFR-Ras-MAPK signaling in P6.p, whereas the 2° cell fate is determined by LIN-12/Notch signaling in P5.p and P7.p, which is activated as a result of EGFR-Ras-MAPK signaling in the neighboring cell. Components of the EGFR pathway, including EGFR, Ras, Raf, MEK, and MAPK, are highly conserved between humans and *C. elegans* [8]. A limited number of chemical compounds that target the EGFR pathway have been tested using *C. elegans* vulval development as a model. Farnesyltransferase inhibitors, which inhibit Ras activity, and MCP compounds, which disrupt Ras-Raf interactions were found to act specifically on the orthologous proteins in the *C. elegans* EGFR-Ras pathway [10–12]. The toxicity of the EGFR kinase inhibitors BIBU1361 and BIBX1382 was also evaluated in *C. elegans* [13]. These studies suggest the potential for using *C. elegans* as a tool for anti-EGFR pathway drug screening.
In this study, we developed and analyzed a human EGFR-driven C. elegans model, which exhibits the Muv phenotype. Using this model, a pilot screen of 9,960 chemicals was conducted, and an EGFR inhibitor and a MEK inhibitor were isolated as suppressors, suggesting that this C. elegans-based system can be used efficiently to screen for new EGFR-inhibitory drugs.

Materials and Methods

Worm culture and strains

Wild-type N2 and mutant strains were cultured as described by Brenner [14]. Mutant alleles used in this work are let-23(sy1), let-23(sa62), let-60(n1700) and lin-15(n765). Integration lines used in this work are jgIs6[let-23::EGFR-TK[P[let-23::hEGFR]]]; jgIs19[let-23::Katrin90M-EMR-1::RFP]; jgIs5[let-23::HMP-1::GFP]; jgIs6[jgIs19]; jgIs25[]; jgIs5[let-23::HMP-1::GFP]; jgIs1136 (HMP-1::GFP); PS4657 (AJM-1::GFP) and PS3352 (CDH-3::GFP).

Chemical treatment and statistics

Chemicals including gefitinib, erlotinib, U0126, AZD6244, PD0325901 and WZ4002 were purchased from Selleck Chemicals LLC. (Houston, TX, USA), and the 1,280 chemical library was purchased from Sigma-Aldrich Co. LLC. (St. Louis, MO, USA). The other 7,680 chemicals were obtained from the Korea Chemical Bank of KRICT. Chemicals were dissolved in 100% DMSO solution, and kept at −20°C as 1 or 10 mM stocks for screening. All chemical tests were executed in 96-well plates, and the final volume per well was 10 μl including worms, cholesterol, and dead E. coli. The DMSO concentration of the control group was kept at 0.5%, and DMSO concentrations of all experimental groups were below 0.5%. The final chemical concentration used for the screen was 5 μM and 20 to 50 L1 worms were cultured in each well of the 96-well plate. Each chemical test included at least three wells per chemical and was repeated at least twice. The error bars in all graphs represent SD (standard deviation), and P values relative to the control were calculated by unpaired Student’s t-test.

Results

Chimeric LET-23::hEGFR-TK protein is functional in C. elegans

To develop a C. elegans model system to screen for chemicals that inhibit human EGFR (hEGFR) activity, we designed plasmid constructs that express the C. elegans EGFR ortholog, LET-23, and the hEGFR fusion protein, by swapping the cytoplasmic or TK domain of LET-23 with each hEGFR domain. As shown in Figure S1A and S1B, we aimed to facilitate functional expression of the human counterpart in C. elegans by retaining most of the C. elegans LET-23 coding and regulatory sequences, for example, by maintaining C-terminal residues important for proper trafficking [15]. The putative protein products of these transgenes have 1388 amino acids (LET-23::hEGFR) or 1323 amino acids (LET-23::hEGFR-TK). As shown in Figure S1A and S1B, LET-23::hEGFR includes 841 amino acids of the LET-23 N-terminal domain, 542 amino acids of the human EGFR C-terminal domain, and 5 amino acids of the LET-23 PDZ interacting motif. LET-23::hEGFR-TK includes 841 amino acids of the LET-23 N-terminal domain, 306 amino acids of the human EGFR-TK domain, and 176 amino acids of the LET-23 C-terminal domain. To test whether this chimeric LET-23::hEGFR-TK protein is functional, the construct was microinjected into the let-23(sy1) mutant. Most let-23 mutants are lethal, but let-23(sy1) is viable and vulvaless (Vul) due to aberrant trafficking of LET-23 [15–17]. The chimeric LET-23::hEGFR-TK protein rescued the Vul phenotype of let-23(sy1) (Fig. 1B), indicating that the chimeric protein is functional in C. elegans. When the let-23(sy1) mutant was rescued with jgIs19, an integrated strain containing the LET-23::hEGFR transgene, the let-23(sy1)jgIs19 strain showed a significantly reduced vulvaless population (9.1%) compared to the let-23(sy1) mutant (92%) (Fig. S1C).

Next, we assessed the effects of over-expressing the activating mutant form of LET-23::hEGFR-TK in a let-23(+)-background. Increased activity of the EGFR-Ras-MAPK pathway results in the hyper-induction of vulval cells, referred to as a Muv phenotype, as is seen with the semi-dominant let-23(sa62) mutation and the constitutively active let-60(n1700) mutation. lin-13 acts upstream of let-23 to negatively regulate the EGFR-Ras-MAPK pathway [18]. This negative regulation is disrupted in the lin-13(n765) mutant, resulting in a strong Muv phenotype [18,19]. Thus, we expected that the activating mutations in the EGFR-TK region would also cause a Muv phenotype. Two activating EGFR mutations that confer gefitinib sensitivity to certain lung cancers were tested:
EGFR[L858R] and EGFR[A747–749] [20,21]. In-frame deletions in exon 19 including Δ747–749 (44%), and single point mutations in exon 21 including L858R (41%) are the most frequently found EGFR-TK activating mutations in NSCLC [20,22]. The gefitinib-resistant EGFR[T790M-L858R] mutation was also tested. T790M is a secondary mutation which endows gefitinib resistance to the L858R lesion [21]. Chimeric LET-23::hEGFR-TK containing any of these mutations induced the hyper-induction of vulval cells resulting in a Muv phenotype (Fig. 1C and Table 1). Transgenic animals expressing LET-23::hEGFR-TK[L858R] exhibited a larger pseudovulva compared to let-23(sa62) and let-60(n1700) Muv mutants. (D) Hoechst33342 staining of the pseudovulval region in jgls6 revealed many nuclei. The boxed region of the lower panel is enlarged in the right panel. (E) Expression of a 1′ cell marker, CDH-3::GFP in the wild-type worm and jgls6. CDH-3::GFP is highly expressed both in the vulva and pseudovulva of jgls6. (F) Expression of 2′ vulval cell fate markers in the lin-15 Muv mutant and jgls6. Reporter genes controlled by promoters of egl-17 and dhs-31 were expressed in the vulva and pseudovulva. Arrowheads indicate normal vulvae and small arrows indicate pseudovulvae. Scale bars, 50 μm.

doi:10.1371/journal.pone.0042441.g001

Figure 1. The development of the human oncogenic EGFR induced Muv model. (A) LET-23 and LET-23-based chimeric receptor constructs. All constructs were designed to express each chimeric receptor from the let-23 promoter. (B) The LET-23::hEGFR-TK chimera rescues the vulvaless phenotype of the let-23(sy1) mutant. (C) A comparison of several Muv mutants and the jgls6 transgenic strain which expresses LET-23::hEGFR-TK[L858R]. C. elegans expressing LET-23::hEGFR-TK[L858R] exhibited a larger pseudovulva compared to let-23(sa62) and let-60(n1700) Muv mutants. (D) Hoechst33342 staining of the pseudovulval region in jgls6 revealed many nuclei. The boxed region of the lower panel is enlarged in the right panel. (E) Expression of a 1′ cell marker, CDH-3::GFP in the wild-type worm and jgls6. CDH-3::GFP is highly expressed both in the vulva and pseudovulva of jgls6. (F) Expression of 2′ vulval cell fate markers in the lin-15 Muv mutant and jgls6. Reporter genes controlled by promoters of egl-17 and dhs-31 were expressed in the vulva and pseudovulva. Arrowheads indicate normal vulvae and small arrows indicate pseudovulvae. Scale bars, 50 μm.

doi:10.1371/journal.pone.0042441.g001

The Muv phenotype of jgls6 is due to ectopic activation of the LET-23/EGFR pathway

To confirm that pseudovulva formation in jgls6 is due to specific activation of the EGFR-Ras-MAPK pathway by the chimeric LET-23::hEGFR-TK[L858R] protein, we performed RNAi of genes in the EGFR-Ras-MAPK pathway. Consistent with ectopic activation of the EGFR-Ras-MAPK pathway, knockdown of genes downstream of let-23, including let-60[Ras], mki-2/
MEK, and mpk-1/MAPK, suppressed the Muv phenotype of jgIs6. RNAi of the LET-23/EGFR upstream gene lin-3/EGFR also suppressed the Muv phenotype. The Muv phenotype of another transgenic line, jgIs25, which expresses LET-23::hEGFR-TK[L858R-T790M], was also suppressed by RNAi of let-60, mek-2, and mpk-1 (Fig. S3A). Since the Wnt pathway acts in parallel to lin-3 to maintain VPC competence [24], we also performed Wnt pathway gene knockdown by RNAi to test whether Wnt activity affects Muv formation in jgIs25. Two Wnt pathway genes (bar-1 and ccm-2) were tested, because their knockdown phenotypes are associated with vulval development [25,26]. Similar to lin-3 knockdown, RNAi of bar-1 or ccm-2 resulted in suppression of the Muv phenotype of jgIs25 (Fig. S3B). We observed rare larval lethality from these RNAi experiments because synchronized L1 larvae were treated with RNAi, same as the same method we used for drug treatment described below. To confirm the lethal RNAi effect of EGFR downstream genes, we treated jgIs25 L4 larvae with let-60 or mpk-1 RNAi, and counted the numbers of F1 progeny. Larval lethality was significantly increased by let-60 or mpk-1 RNAi (Fig. S3C).

We compared vulval cell fate markers in jgIs6 and Muv mutants that have the EGFR-Ras-MAPK pathway activated. When the 1° cell fate marker was examined, jgIs6 pseudovulvae showed expression of the 1° cell fate marker CDH-3::GFP (Fig. 1E). CDH-3 is a cadherin expressed in the 1° vul C, D, E, and F cells [27]. To test for 2° fate marker expression, we constructed an integrated transgenic line expressing both egl-17p::EMR-1::RFP and dhs-31p::NLS::GFP. EGL-17 is expressed in the 2° vul C and D cells, and DHS-31 in the 2° vul B1, B2, and D cells at the adult stage [27,28]. EMR-1 is a homolog of the human integral nuclear membrane protein emerin [29], and therefore, causes localization to the nuclear envelope. In a wild-type background, egl-17p::EMR-1::RFP and dhs-31p::NLS::GFP are expressed at the nuclear envelope and nucleus of the 2° vulval cells, respectively. Both lin-15(n765) and jgIs6 animals had similar patterns of expression of egl-17p::EMR-1::RFP and dhs-31p::NLS::GFP (Fig. 1F). For the further comparison of jgIs6 and Muv mutants, we examined the expression of AJM-1::GFP and HMP-1::GFP, which are both expressed at the adherens junction and mark the boundaries of proliferating and differentiating epithelial cells [30]. AJM-1::GFP and HMP-1::GFP expression was observed in ventral imaginations, including putative pseudovulval regions in jgIs6, let-60(n1700), and lin-15(n765) mutants at the L4 stage. These two junction markers were also observed in the pseudovulva of jgIs6 at the adult stage (Fig. S4). Taken together, the results described above suggest that the jgIs6 transgenic strain expressing the chimeric LET-23::hEGFR-TK[L858R] protein display characteristics that are consistent with over-activation of the EGFR pathway in the Muv mutants.

Gefitinib and erlotinib inhibit the Muv phenotype of jgIs6

To determine whether the jgIs6 transgenic strain expressing the chimeric LET-23::hEGFR-TK[L858R] protein could be used in a large-scale screen for human EGFR-TK inhibitors, we tested the ability of the human EGFR-TK inhibitors to inhibit the Muv phenotype in C. elegans. The effects of drugs gefitinib and erlotinib on the Muv phenotype of jgIs6 were tested in a concentration range of 10 ng/ml to 400 ng/ml. Gefitinib treatment did not inhibit the Muv phenotype of jgIs6 (Fig. 2C). Erlotinib, another EGFR-TKI anti-cancer drug, produced similar inhibitory effects to gefitinib (Fig. 2D). Gefitinib and erlotinib inhibit the Muv phenotype of jgIs6.

Table 1. The multivulva phenotype of transgenic strains expressing LET-23::hEGFR-TK proteins.

<table>
<thead>
<tr>
<th>Name</th>
<th>% Muv*</th>
<th>Integration line (% Muv, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LET-23::hEGFR</td>
<td>0</td>
<td>jgh19 (0.175)</td>
</tr>
<tr>
<td>LET-23::hEGFR[L858R]</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>LET-23::hEGFR[T790M-L858R]</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>LET-23::hEGFR-TK</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LET-23::hEGFR-TK[L858R]</td>
<td>49</td>
<td>jgh6 (94.6 ± 1.33, 1465)</td>
</tr>
<tr>
<td>LET-23::hEGFR-TK[T790M]</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LET-23::hEGFR-TK[jg747–752]</td>
<td>12</td>
<td>jgh25 (94.9 ± 0.32, 410)</td>
</tr>
<tr>
<td>LET-23::hEGFR-TK(T790M)</td>
<td>45</td>
<td>jgh25 (94.9 ± 0.32, 410)</td>
</tr>
<tr>
<td>LET-23[jl[3031R]]</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

All transgenes were expressed by the let-23 promoter, and transgenic lines which show highest stability were selected out of 2 or 3 stable lines for each transgene. 100 worms were counted for each transgenic line. The amino acid L1031 in LET-23 is analogus to L858 in EGFR. *% Muv, the penetrance of Muv phenotype among transgenic animals. doi:10.1371/journal.pone.0042441.t001

Table 2. The sqt-1 mutation enhances the Muv phenotype of integrated strains.

<table>
<thead>
<tr>
<th>Strain</th>
<th>% Muv</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>jgIs6</td>
<td>94.6 ± 1.33</td>
<td>1465</td>
</tr>
<tr>
<td>jgIs6+sqt-1(g22056)</td>
<td>97.4 ± 0.44</td>
<td>2012</td>
</tr>
<tr>
<td>jgIs25</td>
<td>94.9 ± 0.32</td>
<td>410</td>
</tr>
<tr>
<td>jgIs6+sqt-1(g22056)</td>
<td>95.1 ± 0.19</td>
<td>593</td>
</tr>
<tr>
<td>jgIs26</td>
<td>50.9 ± 4.13</td>
<td>494</td>
</tr>
<tr>
<td>jgIs25+sqt-1(g22056)</td>
<td>94.5 ± 1.03</td>
<td>445</td>
</tr>
</tbody>
</table>

The sqt-1(g22056) mutation was introduced to suppress the Rol phenotype of the integrated strains. The effect is different in each integrated line. There was no difference between jgIs25 and jgIs19 (P = 0.834), but the Muv ratio of jgIs6 is changed in the sqt-1 mutant background (P = 0.00163). In particular, jgIs26 which is another integration line of LET-23::hEGFR-TK[T790M-L858R] exhibited the dramatic increase of Muv in the sqt-1 mutant background (P < 0.001). This Rol suppression by jgIs17 allowed us to score the multivulva more clearly compared to the rolling strain. doi:10.1371/journal.pone.0042441.t002
To determine the stage of worm development during which gefitinib treatment is most effective, we treated jgIs6 of each larval stage with 1 μM gefitinib, and scored the Muv phenotype at the adult stage. Animals exposed to gefitinib from the L1, L2, or L3 stages showed a marked reduction in the Muv phenotype, and the degree of response was similar between the three stages (Fig. 2E). L4 animals were not as susceptible to gefitinib, indicating that gefitinib treatment before the L3/L4 molt, when vulval development initiates, is critical for effective inhibition of the LET-23::hEGFR-TK[L858R] protein. From this result, we concluded...
that early larvae, from L1 to L3, can be used for screening new inhibitors against the activated EGFR-TK signaling pathway.

Pilot screen for inhibitors that suppress the Muv phenotype of \(jgIs6 \)

Based on our early results, we designed a protocol for large-scale high-throughput screening of EGFR inhibitors using \(jgIs6 \). To prepare a large number of synchronized larvae, \(C. \) elegans were grown until the plates were filled with eggs, and larvae and adults were removed by simple washing with M9 buffer. After 12 hours, hatched larvae were harvested and washed three times with M9 buffer. We dispensed L1 larvae into 96-well plates that contained a mix of dead \(E. \) coli and the chemicals being tested. After 3–4 days, the Muv phenotype was observed on a dissecting microscope (Fig. 3A). Using this protocol, we conducted a screen of 1,280 small molecules with known molecular targets and efficacy. Among the 1,280 chemicals, AG1478 and U0126 inhibited the Muv phenotype of \(jgIs6 \). AG1478 is an EGFR inhibitor frequently used in \(in \) \(vitro \) experiments, with a structure similar to gefitinib (Fig. 3B). U0126, which is known as an inhibitor of MEK (Fig. 3C). When the effects of AG1478 and U0126 on the gefitinib-resistant LET-23: \(h \) EGFR-TK \([T790M-L858R] \) model \(jgIs25 \) were tested, only U0126 had an inhibitory effect, whereas AG1478 was ineffective (Fig. 3D).

MEK inhibitors may potentially treat gefitinib-resistant cancers

The observation that U0126 inhibited the Muv phenotype of \(jgIs25 \) suggested that some MEK inhibitors may have the potential to inhibit gefitinib-resistant forms of EGFR mutations. Therefore, we tested the effects of another MEK inhibitor, PD0325901, as well as a Raf\([V600E]\) inhibitor \((AZD6233) \), and an EGFR\([T790M]\) inhibitor \((WZ4002) \) in our model system. None of these chemicals inhibited the Muv phenotype of \(jgIs6 \) animals at doses effective for U0126 (1 \(\mu \)M or 5 \(\mu \)M) (Fig. 4A). However, at higher doses (5 \(\mu \)M or 20 \(\mu \)M), the MEK inhibitor PD0325901 slightly inhibited the Muv phenotype of \(jgIs25 \) (Fig. 4B). These results were confirmed in a side-by-side test, where \(jgIs6 \) and \(jgIs25 \) animals were treated with 100 \(\mu \)M of each chemical to observe the effects on the Muv phenotype. WZ4002, which is an inhibitor against the EGFR\([T790M]\) gatekeeper mutation \([36] \), inhibited the Muv phenotype of \(jgIs25 \) better than that of \(jgIs6 \). Similar to U0126, PD0325901 perfectly inhibited the Muv phenotype of both \(jgIs6 \) and \(jgIs25 \) (Fig. 4C). We also tested whether these chemicals target \(C. \) elegans genes by treating the \(lin-15 \) Muv mutant with U0126 and PD0325901. Both U0126 and PD0325901 suppressed the Muv phenotype of \(lin-15 \) at an excessive concentration (Fig. 4D). This result suggests that \(mek-2 \), one of MEKs in \(C. \) elegans that is related to vulval development, is one of the possible target candidates of U0126 and PD0325901.

Figure 3. A pilot screen of 1,280 chemicals for EGFR-TK inhibitors using \(jgIs6 \). (A) Screening method, including synchronization of \(C. \) elegans and liquid culture using the 96-well plate for inhibitor screen. (B) Chemical structures of gefitinib, AG1478 and U0126. (C) Both AG1478 and U0126 inhibit the Muv phenotype of \(jgIs6 \) in a dose dependent manner. \((n = 295, 193, 381, 133, 254, 304 \) and 415 from left along the X-axis). (D) Effect of gefitinib, erlotinib, AG1478 and U0126 on \(jgIs25 \). Gefitinib, erlotinib, and AG1478 did not inhibit the Muv phenotype of \(jgIs25 \), but U0126 inhibited. \((n = 81, 99, 106, 90 \) and 81). Chemical concentration, 5 \(\mu \)M. * \(P < 0.001 \).

doi:10.1371/journal.pone.0042441.g003
All transgenic strains expressing the activated EGFR chimeras, including \(jgIs6 \) and \(jgIs25 \), grow slowly (Fig. 5A and Fig. S5) similar to transgenic strains ectopically expressing LIN-3/EGF [37]. Interestingly, EGFR-TK inhibitors repaired the growth rate of \(jgIs6 \) to the level of wild type, and U0126 and PD0325901 rescued the growth rate of both \(jgIs6 \) and \(jgIs25 \) (Fig. 5B).

Discussion

We constructed transgenic \(C. \) elegans containing several different EGFR constructs. Transgenic lines expressing LET-23::hEGFR chimeric receptors exhibited a much stronger phenotype than those expressing LET-23::hEGFR-TK chimeric receptors (Table 1). Unfortunately, we failed to get integration lines for those constructs and only have data produced from the integration lines of LET-23::hEGFR-TK transgenic lines. The cytoplasmic tail of hEGFR may have evolved to transmit the activated signals more efficiently than LET-23, \(C. \) elegans EGFR, even in VPCs.

To establish our model system, the chimeric LET-23::hEGFR-TK transgene was expressed in a \(let-23(+) \) background. The potential formation of heterodimers of endogenous LET-23 with the chimeric LET-23::hEGFR-TK protein may explain some observations that were made over the course of our study. We occasionally observed that high doses of gefitinib inhibited normal vulval development in \(jgIs6 \). Also, RNAi of the EGFR upstream gene, \(lin-3/EGF \), suppressed the Muv phenotype of \(jgIs6 \) and \(jgIs25 \) (Fig. 5A), which may be explained by heterodimerization of the endogenous and transgenic chimeric protein; although, the early role of \(lin-3 \) in establishing and maintaining vulval cell competence may contribute to this phenotype [24]. In addition, Wnt pathway gene knockdown by RNAi affected the Muv formation in \(jgIs25 \) (Fig. S3B). The Wnt pathway acts in parallel to \(lin-3 \) during VPC competence [24]. As in many previous studies, vulval development in \(jgIs6 \) and \(jgIs25 \) appears to involve several signaling pathways rather than simple EGFR activation. Nevertheless, expressing the chimeric transgene in a \(let-23(+) \) background produces an advantage for screening purposes compared to a \(let-23 \) null background. If the LET-23::EGFR-TK transgene were expressed in a \(let-23 \) null mutant, inhibitor treatment would cause lethality or slow growth, making it difficult to distinguish true inhibitors of human EGFR-TK from chemicals that inhibit other endogenous essential genes or chemicals that display toxicity.

The chimeric LET-23::hEGFR-TK model system was designed for screening inhibitors that target the tyrosine kinase domain of human EGFR. As expected, well-known EGFR inhibitors, such as gefitinib or erlotinib which target the TK domain, were effective in suppressing the Muv phenotype in our model, but have little to no effect on the wild-type \(C. \) elegans. In addition, the chemicals that inhibit the Muv phenotype of \(jgIs6 \) in another screen of 7,680...
suppressed the Muv phenotype of transgenic strains expressing EGFR mutations such as EGFR[L858R] (jgIs6), and was ineffective on gefitinib-resistant mutations, such as EGFR[T790M-L858R] (jgIs25). Using this model system, a MEK inhibitor was identified as a potential inhibitor of gefitinib-resistant EGFR mutations. In our models, MEK inhibitors produced a much stronger effect than WZ4002, which targets the EGFRT790M] mutation [36] (Fig. 4C). Similarly, one could use transgenic C. elegans lines simultaneously expressing oncogenic EGFR and c-Met for drug screening, or use transgenic lines expressing chimeras of C. elegans and human EGFR downstream genes such as Raf or MEK [20,41].

Because we screened inhibitors by observing the Muv phenotype using the dissection microscope, high-throughput screening (HTS) is difficult at a small laboratory level. However, C. elegans is a versatile model system, easily adapted for HTS. Chemical screening methods using C. elegans in automated bio-sorting machines, such as COPAS (Complex Object Parametric Analyzer and Sorter) have been reported [42,43]. The use of fluorescence markers in conjunction with COPAS, such as AJM-1::GFP or egl-17::EMR-1::RFP to mark the pseudovulvae, could enable high-throughput screening methods for new anti-cancer drugs in our model system. We propose another screening method that uses jgIs6 or jgIs25 would perform better than the one used in this study. These transgenic strains grow slowly and EGFR pathway inhibitors suppress the growth phenotype (Fig. 5). With these strains, we will be able to screen inhibitors first by selecting fast growing C. elegans and then confirm the Muv phenotype suppression.

By expressing a chimera of the C. elegans and human EGFR proteins in C. elegans, we have developed and characterized an animal model system that can be used to screen EGFR inhibitor anti-cancer drugs. The transgenic C. elegans have a multivulva phenotype, which is consistent with the activated EGFR pathway. In a pilot screen of 8,960 molecules, chemicals such as AG1478, which share a common backbone structure with gefitinib and erlotinib, as well as a MEK inhibitor, U0126, inhibited the Muv phenotype of jgIs6. We also provide evidence that MEK inhibitors may be effective in treating cancers that are resistant to known EGFR-TKIs. The humanized C. elegans makes a highly specific in vivo animal screening model system.

Supporting Information

Figure S1 Plasmid constructs for expressing LET-23::hEGFR chimeric receptors.
(PDF)

Figure S2 Amino acid sequences of the LET-23::hEGFR-TK and LET-23::hEGFR transgene products.
(PDF)

Figure S3 Knock-down of Ras-MAPK and Wnt pathway genes in jgIs6 and jgIs25 by feeding RNAI.
(PDF)

Figure S4 Expression of epithelial junction proteins in the jgIs6 transgenic worm which expresses LET-23::hEGFR-TK[L858R].
(PDF)

Figure S5 Adult ratios of wild type and two integrated strains over time.
(PDF)
Figure S6 Seven chemicals found to inhibit the Muv phenotype of jks6 in another screen are similar in structure to gefitinib.

Acknowledgments

We thank the Korea Chemical Bank of KRICT for providing 7,680 chemicals. Some nematode strains including let-23, let-69, lin-15, TGF1136, PS14373 and PS13352 used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR).

Author Contributions

Conceived and designed the experiments: KMH HTK JS. Performed the experiments: YKB JYS JS. Analyzed the data: YKB YNK SK JS. Contributed reagents/materials/analysis tools: SK. Wrote the paper: YNK MSC JYK JS.

References