Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides

Vineela Chukkapalli a, Kristi L. Berger a,1, Sean M. Kelly a, Meryl Thomas b, Alexander Deiters b, Glenn Randall a,∗

a Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
b Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA

ARTICLE INFO

Keywords:
Phosphatidylinositol-4-kinase alpha
Phosphatidylinositol-4-phosphate
HCV replication complex
Direct-acting anti-virals

ABSTRACT

Combinations of direct-acting antivirals (DAAs) against the hepatitis C virus (HCV) have the potential to revolutionize the HCV therapeutic regime. An integral component of DAA combination therapies is HCV NS5A inhibitors. It has previously been proposed that NS5A DAAs inhibit two functions of NS5A: RNA replication and virion assembly. In this study, we characterize the impact of a prototype NS5A DAA, daclatasvir (DCV), on HCV replication compartment formation. DCV impaired HCV replicase localization and NS5A motility. In order to characterize the mechanism behind altered HCV replicase localization, we examined the impact of DCV on the interaction of NS5A with its essential cellular cofactor, phosphatidylinositol-4-kinase III α (PI4KA). We observed that DCV does not inhibit PI4KA directly, nor does it impair early events of the NS5A–PI4KA interaction that can occur when NS5A is expressed alone. NS5A functions that are unaffected by DCV include PI4KA binding, as determined by co-immunoprecipitation, and a basal accumulation of the PI4KA product, PI4P. However, DCV impairs late steps in PI4KA activation that requires NS5A expressed in the context of the HCV polyprotein. These NS5A functions include hyper-stimulation of PI4P levels and appropriate replication compartment formation. The data are most consistent with a model wherein DCV inhibits conformational changes in the NS5A protein or protein complex formations that occur in the context of HCV polyprotein expression and stimulate PI4P hyper-accumulation and replication compartment formation.

Introduction

About 150 million people are chronically infected with hepatitis C virus (HCV) (WHO). Therapy for HCV including interferon and ribavirin and a viral protease inhibitor boceprevir or telaprevir, is successful in ~75% of treatments (Chatel-Chaix et al., 2012). Recently, simeprevir, another protease inhibitor and sofosbuvir, a nucleotide analog inhibitor of the viral polymerase were also approved for therapy and improvement of response rates (Stedman, 2014). Many interferon-free regimens combining different DAA classes are currently in clinical trials (Au and Pockros, 2014). A common component of these combination therapies is the NS5A DAA, typified by the lead compound daclatasvir (DCV). DCV has currently moved to Phase III trials and is noteworthy due to its very high potency (picomolar) against HCV in vitro as compared with other HCV inhibitors (Gao et al., 2010). The mechanism of action for this drug class is unclear; however, it is thought to target HCV NS5A since drug resistant mutations accumulate in the viral NS5A gene (Lemm et al., 2010). NS5A DAAs block HCV at two different stages of life cycle with distinct kinetics: HCV replication complex formation and assembly of infectious HCV particles (McGivern et al., 2014; Guedj et al., 2013).

NS5A is a multi-functional protein with roles in HCV replication and virion assembly (Appel et al., 2008; Penin et al., 2004; Lohmann et al., 2003; Blight et al., 2000). It binds RNA and interacts with several cellular factors to establish an environment conducive for virus replication (Moradpour and Penin, 2013; He et al., 2006). Two phosphorylated forms of NS5A, a basally phosphorylated p56 form and a hyper-phosphorylated form p58, exist in infected cells (Kaneko et al., 1994). It has been suggested that the ratio between these two forms is crucial for both replication and assembly of the virus (Evans et al., 2004; Huang et al., 2007). HCV replicon cells treated with DCV have reduced hyper-phosphorylated NS5A (Lemm et al., 2010; Qiu et al., 2011). It is unclear whether this loss of hyper-phosphorylated NS5A is due to the direct inhibition of a kinase that phosphorylates NS5A or is due to an indirect effect mediated by the inhibition of HCV replication. In addition to the lack of hyper-phosphorylated NS5A, DCV-treated cells also show altered sub-cellular localization of NS5A.

* Correspondence to: Department of Microbiology The University of Chicago, CLSC 7078, 620 East 58th Street, Chicago, Illinois 60637, USA. Tel.: +1 773 702 5673; fax: +1 773 834 8150.
E-mail address: grandall@bsd.uchicago.edu (G. Randall).
1 Present address: Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA.
but the mechanism of this mislocalization is unknown (Lee et al., 2011; Targett-Adams et al., 2011).

One major function of NS5A is to recruit and activate the cellular kinase phosphatidylinositol-4-kinase alpha (PI4KA) (Reiss et al., 2011; Berger et al., 2011; Tai and Salloum, 2011; Bianco et al., 2012; Reiss et al., 2013). PI4KA and potentially its product phosphatidylinositol-4-phosphate (PI4P) are critical for HCV replication (Berger et al., 2009; Tai et al., 2009; Li et al., 2009; Borawska et al., 2009; Trotard et al., 2009; Vaillancourt et al., 2009; Berger and Randall, 2009). In the absence of PI4KA, non-structural proteins form enlarged cytoplasmic structures suggesting improper formation of replication compartments (Reiss et al., 2011; Berger et al., 2011; Tai and Salloum, 2011; Wang et al., 2014). Interestingly, we observed a similar phenotype in DCV-treated cells, leading to the hypothesis that DCV may be altering NS5A–PI4KA interaction and/or activation. To test this hypothesis, we relied on a Tet-inducible osteosarcoma cell line (UHCV) that expresses full-length viral proteins independent of replication (Moradpour et al., 1998). We have previously reported that sole expression of NS5A in this system weakly induces PI4P accumulation, while PI4P is highly induced in the context of the HCV polyprotein (Berger et al., 2011). This observation is consistent with the recent data that NS5B in addition to NS5A is required to observe maximally elevated levels of PI4P in cells (Reiss et al., 2013). In this study, we present evidence that DCV blocks replication formation and the hyper-induction of PI4P by the HCV polyprotein, but not basal activation of PI4P by NS5A alone. These data lead to a model wherein NS5A alone can bind and weakly activate the kinase in the presence of DCV, but that DCV inhibits an NS5A conformational change that occurs in the context of the HCV polyprotein and is associated with both PI4P hyper-accumulation and HCV replication complex formation.

Results

Daclatasvir treatment results in large replicase protein structures with morphology similar to those in cells treated with PI4KA siRNAs

DCV has been shown to cause NS5A relocalization (Lee et al., 2011; Targett-Adams et al., 2011). To determine if other non-structural proteins also relocalize in the presence of DCV, we used cells that express HCV polyprotein independent of replication to monitor replication compartment formation. U2OS osteosarcoma cells expressing full-length HCV polyprotein under tetracycline-inducible conditions (UHCV cells) have been previously used to identify and describe the formation of HCV replication compartments, the membranous web (Moradpour et al., 1998; Gosert et al., 2003). UHCV cells were induced for HCV polyprotein expression in the presence of DMSO or DCV (250 pM), then probed for NS5A and NS5B (the polymerase) localization in UHCV (Fig. 1) In DMSO-treated cells, NS5B shows evenly distributed reticular pattern as expected previously (Berger et al., 2011). However, in DCV-treated cells, NS5B forms large aggregated structures that co-localize with NS5A. PI4KA siRNA-treatment of cells leads to similar aggregation of replicase proteins and alters membranous web morphology (Reiss et al., 2011; Berger et al., 2011; Tai and Salloum, 2011). The similar phenotypes observed between PI4KA siRNA-treated cells and DCV-treated cells lead to a hypothesis of parallel mechanism of action, whereby DCV may perturb HCV-stimulated PI4P accumulation.

Daclatasvir reduces NS5A motility and increases NS5A puncta intensity

To better understand the nature of the large NS5A puncta, we examined the effects of DCV on NS5A dynamics in HCV-infected cells. NS5A has been reported to have two dynamic patterns consisting of smaller motile structures and larger, less motile structures (Eyre et al., 2014; Wolk et al., 2008). We constructed an HCV JC1-like virus (NS2/3) with an eYFP insertion in the C-terminal domain of NS5A, termed NS2/3 5A-eYFP similar to what has been previously described (Moradpour et al., 2004). For efficient replication, residues 2242–2266 in NS5A domain II were deleted (NS2/3 5AA25–eYFP) (Fig. 2A) (Gottwein et al., 2011). This virus replicated similar to wild type HCV and was sensitive to DCV treatment (Fig. 2B). We next performed live-cell imaging of NS2/3 5AA25–eYFP infected cells that were treated with DCV or DMSO and imaged after 3, 8 or 24 h (Movies S1–S4). The total distance traveled (including progressive and non-progressive movement) by NS5A puncta over 15 min periods was quantified. Three representative particle tracks for DMSO and 24 h post DCV treatment are shown in Fig. 2C. As quantified in Fig. 2D, by 8 h post DCV treatment, the total distance traveled by NS5A puncta is reduced and by 24 h, it is significantly lower as compared to the DMSO control. There was a significant increase in the NS5A fluorescence intensities by 24 h post DCV treatment, consistent with the kinetics of replicase aggregation observed in Fig. 1 (Fig. 2E). It should be noted however that the increase in NS5A fluorescent intensities is not due to increase in protein levels but rather due to aggregation of NS5A fluorescent signal. Indeed, as expected, steady-state NS5A levels are decreased upon DCV treatment due to the inhibition of replication (Fig. 2F).

Daclatasvir inhibits HCV-induced PI4P accumulation

The aggregation of non-structural proteins in the presence of DCV is similar to that observed in cells treated with siRNAs against PI4KA, suggesting that DCV might be altering the NS5A–PI4KA interaction. To determine whether DCV inhibits NS5A-mediated PI4P accumulation, we induced DHCV cells for polyprotein expression and treated them simultaneously with either DMSO or DCV for 72 h. As seen in Fig. 3A, uninduced HCV cells show PI4P localization restricted to Golgi, as indicated by colocalization of PI4P with the Golgi marker GM130. Upon HCV polyprotein induction, greater than 80% of cells have PI4P accumulation away from Golgi (Fig. 3B), as previously described (Berger et al., 2011). However, when cells were treated with DCV during polyprotein synthesis, PI4P intensity is significantly reduced (Fig. 3C) and only about 15% of cells showed PI4P relocation away from Golgi (Fig. 3B). This lack of HCV-mediated PI4P synthesis in DCV-treated cells is not due to the decreased polyprotein expression. Although DCV treatment altered NS5A localization, as in Figs. 1 and 3D, similar levels of NS5A are observed in both DMSO and DCV-treated cells.
cells as analyzed by Western blot (Fig. 3E). Altogether, these data suggest that DCV inhibits HCV-mediated PI4P hyper-induction and relocalization.

Daclatasvir does not alter plasma membrane PI4P levels and is thus unlikely to inhibit PI4KA directly

PI4KA is required to maintain plasma membrane pools of PI4P (Balla et al., 2005). To determine whether DCV inhibits PI4KA directly, we analyzed plasma membrane PI4P levels as described in materials and methods, using distinct permeabilization conditions from that used in Fig. 3 to visualize intracellular PI4P levels. UHCV cells were induced or left uninduced for 72 h and treated with DMSO (72 h), DCV (72 h) or the general PI kinase inhibitor wortmannin (30 min) prior to probing for plasma membrane pools of PI4P. As seen in Fig. 4A, there is significant staining of plasma membrane with the PI4P antibody in both induced and uninduced cells, which is different from the intracellular Golgi localization observed in Fig. 3. PI4P colocalizes to some extent with wheat-germ agglutinin, which binds to lectins and acts as a marker for the plasma membrane. There is however no significant difference between plasma membrane intensity of PI4P in DMSO and DCV-treated cells, whereas plasma membrane intensity of PI4P is significantly diminished in cells treated with wortmannin at a concentration (10 μM) that is known to inhibit PI4KA (Fig. 4A and B). Altogether, these data suggest that DCV does not block PI4KA activity directly but may block activation of PI4KA by NS5A.

Daclatasvir does not inhibit PI4P relocalization mediated by NS5A alone

Given that DCV prevented PI4P hyper-accumulation in cells expressing full-length HCV polyprotein, we next examined whether DCV impacts the modestly enhanced stimulation of PI4P accumulation observed in cells expressing NS5A alone (Reiss et al., 2011; Berger et al., 2011). Induction of NS5A in UNS5A cells moderately stimulates PI4P accumulation (~1.5-fold, Fig. 5A...
and C), albeit not as efficiently as observed in UHCV cells (−6-fold, Fig. 3A and C), even though, similar or more NS5A is expressed in the conditions tested (Fig. 3E. versus Fig. 5E.). This data suggests that other HCV proteins may also have a role in modulating PI4P accumulation, either directly or indirectly. When NS5A is expressed alone, PI4P relocalization away from the Golgi (as seen in line intensity plots) is similar in DMSO- and DCV-treated cells suggesting that DCV is unable to block the initial PI4P relocalization mediated by NS5A (Fig. 5A). The number of cells showing PI4P relocalization is also not significantly different between DMSO and DCV-treated conditions (Fig. 5B). In contrast to UHCV cells, no difference in NS5A localization was observed in UNS5A cells in the presence of DCV (Fig. 5D). Steady state NS5A levels are also similar in DMSO- and DCV-treated cells (Fig. 5E).

Biotinylated NSSA inhibitor interacts with NSSA at similar efficiency in both UHCV and UNS5A cells

A biotinylated DCV-like drug has been used before for NS5A interaction studies and the structural comparison between DCV and
to mark cell surface. Cells were then treated with DMSO or 250 pM DCV for 24 h or 10 μM wortmannin for 2 h, prior to incubating with 50 μg/ml Alexa Fluor 488-Wheat Germ Agglutinin on ice for 5 min to mark cell surface. Cells were then fixed and stained for plasma membrane PI4P. (A) Z-stack images across the plane of the cell were taken using confocal microscope and the maximum intensity projection image is shown. (B) Quantification of PI4P intensity per cell is shown. Error bars represent standard deviation between cells. ns, not significant; *p < 0.05.

Fig. 4. DCV does not inhibit plasma membrane PI4P levels that are maintained by PI4KA. UHCV cells were induced or uninduced for a total of 72 h. Cells were either treated with DMSO or 250 pM DCV for 24 h or 10 μM wortmannin for 2 h, prior to incubating with 50 μg/ml Alexa Fluor 488-Wheat Germ Agglutinin on ice for 5 min to mark cell surface. Cells were then fixed and stained for plasma membrane PI4P. (A) Z-stack images across the plane of the cell were taken using confocal microscope and the maximum intensity projection image is shown. (B) Quantification of PI4P intensity per cell is shown. Error bars represent standard deviation between cells. ns, not significant; *p < 0.05.

the tagged NS5A inhibitor is shown (Fig. 6A) (Gao et al., 2010). Though not as potent inhibitor as DCV, this tagged NS5A inhibitor still inhibits HCV replication (Fig. 6B). To determine whether the drug binds NS5A expressed from both UHCV and UNSSA cells, a biotin-tagged NS5A inhibitor was incubated with induced or uninduced cells for 16 h before lysis. The biotinylated drug was then pulled down using streptavidin beads overnight, washed and analyzed for NS5A that was pulled down using western blotting. As seen in Fig. 6C, the biotinylated drug precipitates NS5A at similar efficiency in both UHCV and UNSSA cells. Thus, the inability to block PI4P relocalization is not due to the inability of the drug to interact with NS5A in UNSSA cells. Based on these data, it is likely that DCV does not inhibit moderate PI4KA stimulation seen in cells expressing NS5A alone but inhibits hyper-accumulation of PI4P observed only in the context of HCV polyprotein expression.

Daclatasvir functions after NS5A–PI4KA interaction

In order to further analyze the mechanism by which DCV inhibits PI4P production in UHCV cells, we tested whether NS5A and PI4KA still interact in the presence of DCV. UHCV cells were transduced with lentiviral pseudoparticles expressing HA-tagged PI4KA and twenty-four hours later, cells were stimulated for HCV protein expression. Cells were then treated for 24 h with DMSO or DCV (250 pM) on day 3 and lysed and immunoprecipitated either using HA or NS5A antibody. NS5A co-immunoprecipitated with PI4KA and vice versa in DMSO-treated cells as previously described (Fig. 7). PI4KA still co-immunoprecipitates with NS5A in DCV-treated cells, suggesting that the interaction between NS5A and PI4KA remains intact even in the presence of DCV. Similar observations were made with endogenous PI4KA (data not shown). Thus, it is likely that DCV functions subsequent to the initial NS5A–PI4KA interaction (Fig. 6) and basal stimulation of PI4KA activity (Fig. 5), but prior to the hyper-stimulation of PI4KA (Figs. 1–3).

Daclatasvir resistant mutants rescue PI4P production

We next tested whether a DCV-resistant mutant could rescue PI4P accumulation in DCV-treated cells. HuH-7.5 cells were infected with either WT or DCV-resistant Y93H virus. Forty-eight hours post-infection, cells were treated with DMSO (data not shown) or 500 pM DCV and fixed at 2, 6, and 24 h post-treatment and probed for PI4P and NS5A (Fig. 8A and B). Cells infected with WT virus showed significant reduction in PI4P levels starting at 6 h post DCV treatment. At around the same time, NS5A begins to aggregate which is further increased by 24 h post-treatment. This NS5A aggregation seems to correlate to what was observed in DCV-treated UHCV cells (Fig. 1), live-cell analysis (Fig. 2) and in siPI4KA-treated cells (Berger et al., 2011). The DCV-resistant mutant Y93H-infected cells, on the other hand, had enhanced PI4P accumulation in the presence of DCV and no significant difference was observed between the time points (Fig. 8A and B). Similar to previous observations, this mutant also rescues NS5A localization (Targett-Adams et al., 2011). Thus, the drug-resistant mutant is able to rescue PI4P production in the presence of DCV. Consistent with NS5A aggregation and loss of PI4P levels that are indicative of replication inhibition, NS5A levels were also reduced by 24 h in WT but not in the resistant Y93H virus infected cells (Fig. 8C). Hyperphosphorylated NS5A decreased with greater kinetics than hypophosphorylated NS5A DCV treatment for WT virus (Fig. 8C). This suggests that either DCV directly inhibits NS5A phosphorylation, or alternatively, that hyperphosphorylated NS5A has a shorter half-life and hypophosphorylated NS5A and that its preferential decrease is an indirect effect of inhibiting HCV replication.

In order to verify the above data in replication-independent mechanism, we switched to transient transfection of NS3-5b in T7RP cells instead of using UHCV cells, since NS5A hyperphosphorylation is not readily distinguished in UHCV cells. T7RP cells were transfected with NS3-5b expression plasmid containing either WT, DCV-resistant mutant Y93H or PI4KA-interaction mutant HIT-AAA of NS5A. Four hours post-transfection, cells were treated with DMSO or DCV (500 pM or 5 nM) and then fixed and stained for plasma membrane PI4P. Cells were then treated for 24 h with DMSO or DCV and fixed at 2, 6, and 24 h post-transfection. Similar to UHCV and virus infection data, DCV inhibited PI4P levels in WT NS5A expressing cells (Fig. 9A and B). The Y93H mutant, on the other hand, did not show any significant changes in PI4P levels even with high concentrations of PI4P. The PI4KA-interaction mutant, HIT-AAA, as expected did not show any increase...
in PI4P levels with or without DCV treatment. Surprisingly, hyper-phosphorylation of NS5A was not affected in either the WT or Y93H mutant upon DCV treatment (Fig. 9C and D). As was previously shown, the HIT-AAA mutant had increased NS5A hyperphosphorylation (Reiss et al., 2013). Interestingly, DCV treatment decreased the accumulation of NS5A hyper-phosphorylation in the NS5A HIT-AAA mutant (Fig. 9C and D).

Discussion

Previously, we and others have shown that NS5A interacts with and stimulates PI4KA for efficient replication (Reiss et al., 2011; Berger et al., 2011; Tai and Salloum, 2011; Bianco et al., 2012). Impairment of PI4KA function in HCV replication, either by siRNAs or pharmacological inhibitors, perturbs HCV replication.
cells (Figs. 3 and 7). In addition, we show that in both systems, viral protein inducible system (UHCV) and genotype 2a infection, we show and the NS5A (Reiss et al., 2013). PI4KA, there is an increased accumulation of hyperphosphorylated status of NS5A, either directly or indirectly. In the absence of et al., 2014). Additionally, PI4KA modulates the phosphorylation compartment, and is required for optimal HCV replication (Wang et al., 2014). An alternative interpretation is that DCV might inhibit other NS5A functions associated with maintaining PI4P pools, such as RNA binding and dimerization, are largely unaffected (Lee et al., 2011; Targett-Adams et al., 2011; Lim et al., 2012). Though it has been recently suggested that NS5A inhibitors compete out oligos for NS5A binding (Ascher et al., 2014), no such competition was seen for HCV 3’ UTR RNA sequence (Targett-Adams et al., 2011). In this study, we define distinct NS5A–PI4KA interactions that are both resistant and sensitive to DCV treatment. The initial interactions of NS5A with PI4KA, including a physical interaction as defined by co-immunoprecipitation, and a modest stimulation of PI4P accumulation away from the Golgi in cells expressing NS5A alone are largely resistant to DCV inhibition. In contrast, later functions associated with the NS5A replicase components aggregate during DCV treatment similar to what was previously described in PI4KA knockdown cells (Figs. 1, 2 and 7) (Reiss et al., 2011; Berger et al., 2011). The accumulation of NS5A into large fluorescent foci following DCV treatment is kinetically associated with decreases in NS5A velocities (Fig. 2).

NS5A DAAs have been shown to affect some, but not all, activities associated with NS5A. DCV impairs replication compartment formation and virion assembly, but other functions, such as recruitment of NS5A to PI4P–ArfGAP1, which was reported to in
duced that it inhibits HCV replication (Fig. S2C). However, it cannot be in the context of the HCV polyprotein. This suggests either that additional HCV proteins are directly involved in the modulation of PI4KA by NS5A or alternatively, that NS5A achieves a certain protein conformation only in the context of other HCV proteins.

An alternative interpretation is that DCV might inhibit other NS5A functions associated with maintaining PI4P pools, such as binding ArfGAP1, which was reported to influence PI4P levels by removing the lipid phosphatase Sac1 from replication compartments (Li et al., 2014). The ArfGAP1 inhibitor, QS11, inhibits HCV replication and reduces the level of PI4P in NS5A expressing cells. This experiment is somewhat difficult to interpret, however, as NS5A alone is less efficient in stimulating PI4P production compared to full-length HCV polyprotein. We examined QS11 and confirmed that it inhibits HCV replication (Fig. S2C). However, it had no effect on PI4P accumulation in UHCV cells that express full-length HCV polyprotein (Fig. S2A and B). Thus, the inhibition of PI4P hyper-accumulation by DCV likely results from inhibiting NS5A conformational changes associated with PI4KA stimulation and not via an effect on ArfGAP1.

Structural and biophysical studies suggest that DCV binds to a dimeric state of NS5A and influences overall structure of NS5A and PI4KA inhibition aggregates the HCV replicase, resulting in large clusters of double membrane vesicles with reduced individual diameter. PI4KA appears to have multiple functions in HCV replication. Its direct product, PI4P, functions in maintaining PI4P pools, such as de

This experiment is somewhat difficult to interpret, however, as NS5A alone is less efficient in stimulating PI4P production compared to full-length HCV polyprotein. We examined QS11 and confirmed that it inhibits HCV replication (Fig. S2C). However, it had no effect on PI4P accumulation in UHCV cells that express full-length HCV polyprotein (Fig. S2A and B). Thus, the inhibition of PI4P hyper-accumulation by DCV likely results from inhibiting NS5A conformational changes associated with PI4KA stimulation and not via an effect on ArfGAP1.

Structural and biophysical studies suggest that DCV binds to a dimeric state of NS5A and influences overall structure of NS5A and compartment formation. PI4KA inhibition aggregates the HCV replicase, resulting in large clusters of double membrane vesicles with reduced individual diameter. PI4KA appears to have multiple functions in HCV replication. Its direct product, PI4P, functions in maintaining PI4P pools, such as de

This experiment is somewhat difficult to interpret, however, as NS5A alone is less efficient in stimulating PI4P production compared to full-length HCV polyprotein. We examined QS11 and confirmed that it inhibits HCV replication (Fig. S2C). However, it had no effect on PI4P accumulation in UHCV cells that express full-length HCV polyprotein (Fig. S2A and B). Thus, the inhibition of PI4P hyper-accumulation by DCV likely results from inhibiting NS5A conformational changes associated with PI4KA stimulation and not via an effect on ArfGAP1.

Structural and biophysical studies suggest that DCV binds to a dimeric state of NS5A and influences overall structure of NS5A and...
that the resistant mutants that arise reduce the affinity of the drug to NSSA (Ascher et al., 2014; Lambert et al., 2014; Bhattarcharya et al., 2014; Barakat et al., 2014; O’Boyle et al., 2013). Thus by altering the structural integrity or flexibility of NSSA, DCV might affect not just one but multiple functions of NSSA. In addition to inhibition of HCV assembly, genetic trans-complementation assays using a drug-resistant NSSA suggest that DCV inhibits both cis and trans functions of NSSA in replication (Fridell et al., 2011). Thus, there are at least two NSSA functions in HCV RNA replication that are inhibited by DCV. Domain I of NSSA exists in two different conformations based on structural analysis (Love et al., 2009; Tellinghuisen et al., 2005). Recently, Ascher et al. showed that the DCV binds and locks NSSA Domain 1 in one of the conformations (Ascher et al., 2014). Based on our data, this would suggest that the NSSA conformation that DCV binds is also the conformation that binds PI4KA. The second NSSA conformation, which DCV prevents, would then be associated with PI4KA hyper-stimulation and appropriate replication compartment formation. It is not clear that PI4KA hyper-stimulation and HCV replication compartment formation are functionally linked, since they can be uncoupled under certain conditions (Reiss et al., 2013). In addition, PI4KA has multiple interaction sites for NSSA (Harak et al., 2014). Thus, it is likely that in the presence of DCV, PI4KA can still interact with NSSA with one of the several interaction motifs but is unable to be activated efficiently due to the structural constraint caused by DCV.

Interestingly, a cyclophilin A (CypA) inhibitor was recently found to also perturb HCV replication compartment formation (Madan et al., 2014). CypA binds NSSA and promotes NSSA cis–trans isomerization, which is thought to promote conformational changes. Given the similarities between CypA inhibitors and NSSA DAAs in terms of their effect on HCV replication compartment formation and potential effects on NSSA conformational changes, we propose that both likely share similarities in terms of the mechanism of action for inhibition of HCV replication compartment formation.NSSA DAAs may prevent CypA-dependent conformational changes in NSSA that promote replication compartment formation and PI4KA hyper-stimulation. This common mechanism of HCV inhibition by CypA inhibitors and NSSA DAAs highlights the fact that cellular and viral factors involved in HCV replication compartment formation are a rich source for antiviral drug development (Chukkapalli and Randall, 2014).
Conclusions

In this study, we show evidence that PI4P hyper-accumulation seen in HCV polyprotein expressing cells is drastically reduced in DCV-treated cells. However, DCV is unable to impair early events of the NS5A–PI4KA interaction that can occur when NS5A is expressed alone. In addition, DCV inhibits replicase formation. Altogether, the data are most consistent with a model wherein DCV inhibits conformational changes in the NS5A protein or protein complex formations that occur in the context of HCV polyprotein expression. These NS5A conformational changes are likely required to both stimulate PI4P hyper-accumulation and form HCV replication compartment.

Materials and methods

Cells

U2OS osteosarcoma derived cell line with tetracycline inducible expression of either full-length genotype 1a polyprotein (UHCV) or NS5A alone (UN5SA) (kindly provided by Darius Moradpour) was cultured in DMEM-high Glucose (Invitrogen Cat. No.: 11995) with 10% fetal bovine serum (FBS), 1 µg/ml Puromycin, 500 µg/ml Geneticin and 1% Penicillin–Streptomycin (PS) along with 1 µg/ml Tetracycline to repress HCV protein expression (Berger et al., 2011; Moradpour et al., 1998). To induce HCV protein expression, cells were washed 3–4 times before adding the above media without tetracycline. Huh-7.5 and HEK 293T cells were maintained as previously described in DMEM containing 5% FBS, 0.1 mM non-essential amino acids and 1% PS (Berger et al., 2011). T7 RNA polymerase expressing Huh-7.5.1 cells (T7RP cells) (kindly provided by Andrew Tai) are maintained in DMEM with 10% FBS, 0.1 mM non-essential amino acids, 1% PS along with 1.5 µg/ml Puromycin (Tai and Salloum, 2011).

Plasmids and viruses

pTRIP–HA–PI4KA was made by standard restriction enzyme digestion and ligation by replacing PI4KA from pTRIP–PI4KA (previously described (Berger et al., 2011)) with HA-tagged PI4KA from pEF–HA–PI4KA. pHbtx6CNS2C3 (NS2/3) was previously described and is similar to JC1 virus (Mateu et al., 2008; Pietschmann et al., 2006). pNS2/3 Y93H carrying DCV-resistant mutation in NS5A was made by PCR mutagenesis and In-fusion HD (Clontech) based cloning. Briefly NS2/3 was digested using SpeI and Rsfl and the vector fragment (~9000 bp) was gel purified and used for cloning the two PCR product inserts using In-fusion HD. Two PCR fragments were amplified from wildtype NS2/3 using Phusion high-fidelity DNA polymerase (NEB) using Forward Primer I: CCAGGGGTACAAAGTACTAGTGC, Reverse Primer I: CTGGCCCTCCGTGTgGCAATTGATAGGAAAG; Forward Primer II: CTTTCCTATCAATTGCcACACGGAGGGCCAG, Reverse Primer II: GCTCAC-CAGGGGACGTCGGAC. The mutation inserted during PCR that changes the genetic code for tyrosine to histidine is shown in lower case. The final plasmid was sequenced to ensure that no additional mutations were inserted during PCR. Infectious genotype 2a virus stock of WT or Y93H mutant was made by electroporating Huh-7.5 cells with either RNA transcribed from NS2/3 or NS2/3 Y93H respectively as described.
concentrations described in Wortmannin (Sigma) was dissolved in DMSO and used at the previously described site in domain III (SSMPP\widehatLEGEPG) that allows replication of the virus (Moradpour et al., 2004). To facilitate efficient replication, as previously described, residues 2242–2266 in N55A domain II were deleted (Gottwein et al., 2011). Real-time RT-PCR analysis to determine the amount of HCV RNA was performed as previously described (Berger et al., 2011) and the RNA was quantified using $2^{-\Delta\Delta CT}$ relative quantification method, p7M vector (kindly provided by Bernard Moss) was used to clone in NS3-5B from pNS2/3 (genotype 2a) to express the non-structural proteins in T7RP cells. DCV resistant N55A mutant Y93H and PI4KA-interaction N55A mutant, HIT-AAA (208–210 amino acids) were made by standard PCR-based cloning.

Chemicals and antibodies

Daclatasvir (DCV) (Selleck Chemicals) was dissolved in DMSO and diluted in media to the final concentration used for the assays. Wortmannin (Sigma) was dissolved in DMSO and used at the concentrations described in figure legends. Digitonin (Sigma) was dissolved in PBS and made fresh before each use.

Primary antibodies used include: rabbit anti-GM130 (Abcam Cat. No.: ab52649), mouse anti-PI4P (Echelon biosciences Cat. No: ZP004), mouse anti-N55A (9E10: a kind gift from Charles Rice, Rockefeller University), mouse anti-NS5B (Enzo life sciences Cat. No.: ZP004), rabbit anti-Actin (Sigma Cat. No.: A2066), and mouse anti-HA (Covance Cat. No.: MMS-101R). Alexafluor-488 conjugated Wheat germ agglutinin (WGA) (Invitrogen) was diluted to a 1 mg/ml stock solution in PBS.

Immunofluorescence

Glass coverslips in 24-well plates were coated with 100 µg/ml poly-L-lysine for 10 min, washed with sterile water and dried. 30,000 UHCV cells and 20,000 U55A cells were seeded and induced for 72 h or for 96 h respectively before fixation. For intracellular PI4P staining, cells were fixed in 4% paraformaldehyde, permeabilized with 20 µM digitonin for 5 min, and quenched with 50 mM ammonium chloride for 15 min. Cells were then blocked with 20% normal goat serum (NGS) for 30 min. All primary and secondary antibodies were diluted in 10% NGS. When using mouse anti-PI4P IgM in combination with mouse anti-N55A IgG, cells were stained first with N55A (1:20,000) and detected by anti-mouse IgG Alexa Fluor 488 (1:1000) and were then further blocked and stained for PI4P (1:200) and detected by anti-mouse IgM Alexa Fluor 594 (1:1000). When staining for NS5B in combination with NS5A, cells were fixed with 4% PFA and permeabilized with 0.1% Triton-X-100 and blocked with 20% NGS. Cells were first stained for NS5B (1:200) and detected using anti-mouse IgG Alexa Fluor 594 and then stained for N55A using Alexa Fluor-488 conjugated 9E10 (1:100) (Invitrogen APEX antibody labeling kit). For plasma membrane staining of PI4P, cells were first incubated with 50 µg/ml Alexa Fluor-488 conjugated Wheat Germ Agglutinin on ice for 5 min before fixing with 4% formaldehyde and 0.2% glutaraldehyde and rinsing with 50 mM ammonium chloride (NH4Cl). Permeabilization, blocking and staining were carefully performed on ice with precooled reagents as described by Hammond et al. (2009). Briefly, cells were blocked and permeabilized with Buffer A (20 mM PIPES, pH 6.8, 137 mM NaCl, 2.7 mM KCl) containing 5% NGS, 50 mM NH4Cl and 0.5% saponin for 45 min on ice. After a couple of rinses with buffer A on ice, primary antibodies were applied in buffer A with 5% NGS and 0.1% saponin for 1 h on ice. After two washes, secondary antibody was applied in the same buffer as primary and incubated for 45 min on ice. The cells were then washed four times in buffer A and post-fixed in 2% formaldehyde in PBS for 10 min on ice and warmed to RT for additional 5 min and rinsed three times in PBS containing 50 mM NH4Cl and once in distilled water before mounting. After staining, all coverslips were mounted in ProLong Gold anti-fade with Dapi nuclear stain (Invitrogen). Samples were imaged using Olympus DSU spinning disc confocal microscope equipped with Photometrics Evolve EMCCD camera. (UChicago Microscopy core facility). Images were taken and processed using SlideBook v5.0 software and analyzed using Image J (NIH).

Immunoprecipitation and western blotting

Immunoprecipitation of PI4KA and N55A was performed as previously described (Berger et al., 2011). Briefly, HEK 293T cells were transfected with pTRIP-HA-PI4KA, HIV–Gagplp and VSV glycoprotein using Lipofectamine 2000. Supernatant containing pTRIP-HA–PI4KA pseudoparticles was collected 48 h later and used to transduce UHCV cells. Twenty-four hours post-transduction, cells were induced for HCV polyprotein expression or left uninduced for a total of 48 h. Cells were treated with 250 pM DCV or DMSO 24 h post-induction for a total of 24 h. Cells were lysed on ice for 30 min in NP-40 lysis buffer (20 mM Tris–HCl, pH 7.5, 150 mM NaCl, 2 mM EDTA, 1% Nonidet P-40, 10% glycerol supplemented with complete protease inhibitor cocktail tablets from Roche), clarified by centrifugation at 20,000g for 30 min. The supernatant was mixed with M-280 sheep anti-mouse IgG dynabeads (Invitrogen) conjugated with either N55A 9E10 antibody or HA antibody to immunoprecipitate N55A and HA–PI4KA respectively. During overnight immunoprecipitation at 4 °C, DCV-treated cells were further treated with 0.6 mM DCV. The immune-complexes were washed three times in NP40-lysiss buffer and boiled with 1 × Laemmli buffer for 5 min before loading on the gel, along with 1% of input cell lysate and blotted for N55A, HA–PI4KA and Actin.

Synthesis of biotinylated N55A inhibitor

(E)-Di-tert-butyl-2,2’-(((ethene-1,2-diylbis(4,1-phenylene))bis(azanediy))bis(carbonyl))bis(pyrrrolidine-1-carboxylate) (1). To a solution of 4,4’-diaminostilbene dihydrochloride (60 mg, 0.21 mmol) in DCM (1 ml) potassium carbonate (58 mg, 0.42 mmol) was added, and the resulting mixture was stirred at RT for 30 min. Ethyl-2-ethoxyquinoline-1-(2H)-carboxylate (125 mg, 0.50 mmol) and N-Boc proline (104 mg, 0.48 mmol) were added and the mixture was stirred at RT for 6 h. The solvent was removed under vacuum and the residue was triturated in ethyl ether. The products were isolated by filtration, washed with H2O and ethyl ether, and dried under vacuum. The coupling product 1 was obtained as a white solid in 95% yield (120 mg, 0.19 mmol). 1H NMR (300 MHz, DMSO-d6): δ = 10.08 (s, 2H), 7.61–7.78 (m, 4H), 7.07 (s, 2H), 4.21–4.09 (m, 2H), 3.34–3.28 (m, 4H), 2.33–2.12 (m, 2H), 1.98–1.70 (m, 6H), 1.38 (s, 9H), 1.25 (s, 9H), HRMS-ESI (m/z) calcd for C34H45N4O6 [M-H]–: 546.3201, found: 546.3206. (E)-N,N-(ethene-1,2-diylbis(4,1-phenylene))bis(pyrrrolidine-2-carboxamide) (2). TFA (0.15 ml) was added slowly to a solution of 1 (60 mg, 0.01 mmol) in DCM (1.4 ml). The reaction mixture was stirred at RT for 4 h. The solvent was removed under vacuum, the residue was dissolved in ethyl acetate (4 ml), washed with 1 M NaOH (2 ml) and brine (2 ml), dried over Na2SO4, filtered, and concentrated to afford 2 as a yellow solid in 99% yield (39 mg, 0.09 mmol) which was further used without purification. 1H NMR (300 MHz, DMSO-d6): δ = 9.97 (s, 2H), 7.62 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.07 (s, 2H), 3.40–3.32 (m, 2H), 2.86 (t, J = 6.6 Hz, 4H), 2.10–1.99 (m, 2H), 1.98–1.62 (m, 6H), HRMS-ESI (m/z) calcd for C34H45N4O6 [M-H]–: 546.3206, found: 546.3205. (E)-1-(2-phenylacetyl)-N-(4-(4-(pyrrrolidine-2-carboxamido)styryl)phenyl)pyrrrolidine-2-carboxamide (3). Triethyl amine (0.014 ml, 0.09 mmol) was added to a solution of 2 (30 mg,
0.07 mmol) in DCM (0.6 ml) at 0 °C. To this mixture a solution of phenylacetylchloride (0.07 ml, 0.05 mmol) in DCM (0.1 ml) was added and the reaction was stirred at RT for 4 h. The reaction mixture was diluted with DCM (5 ml), washed with H2O (3 ml), NaHCO3 (3 ml), and brine (3 ml), dried over Na2SO4, filtered, and concentrated. The crude product was purified by silica gel chromatography with 5% MeOH in DCM as the eluent, affording 4 as a white solid in 52% yield (13 mg, 0.02 mmol). 1H NMR (300 MHz, CDC13): δ = 7.59–7.49 (m, 10 H), 7.31–7.28 (m, 3 H), 7.06 (d, J = 7.2 Hz, 2 H), 4.60–4.56 (m, 1 H), 4.04–3.99 (m, 1 H), 3.78 (s, 2 H), 3.76–3.58 (m, 4 H), 3.28–3.12 (m, 2 H), 2.07–1.89 (m, 6 H), HRMS-ESI (m/z) calcd for C32H35N4O3 [M-H]− + : 523.2736, found: 523.2736. (25)-1-5-((3aS,4S,6R)-2-oxo-2-oxahydroxy-1H-thieno[Stedman, 2014; imidazo-4-yl)-pentanoyl)-N-(4-(((E)- 2-(4-(((2S)-1-(phenylacetyl)-2-pyrrolidinyl)carbonyl)amino)phenyl)vinyl)phenyl)-2-pyrrolidinecarboxamide (4). DIPEA (0.036 ml, 0.21 mmol) and biotin-NHS (14.5 mg, 0.04 mmol) were added to a solution of 3 (22 mg, 0.04 mmol) in DMF (0.3 ml). The reaction mixture was stirred overnight at RT and was slowly poured into vigorously stirred cold ethyl ether (4 ml). The solid was isolated by filtration, washed with cold ethyl ether (4 ml) and dried under vacuum to afford the product 4 as a white solid in 47% yield. 1H NMR (300 MHz, DMF-d6): δ = 10.04 (s, 2 H), 7.94 (s, 1 H), 7.59–7.48 (m, 4 H), 7.29–7.08 (m, 6 H), 6.35 (d, J = 8.9 Hz, 2 H), 4.45–4.06 (m, 4 H), 3.69 (s, 2H), 3.66–4.40 (m, 4 H), 3.15–2.95 (m, 1H), 2.87–2.76 (m, 2H), 2.64–1.90 (m, 8H), 1.70–1.20 (m, 8H), 1.10–1.07 (m, 2H). HRMS-ESI (m/z) calcd for C61H58N4O8S [M-H]− + : 749.9407, found: 749.3520. The analytical data is consistent with literature data (Gao et al., 2010). The synthesis scheme is shown in Fig. S1.

Streptavidin pull-down

UHCV cells and UNSSA cells were induced or left uninduced for 72 h. Cells were treated with either DMSO or biotinylated NS5A inhibitor (1 µM) for 16 h before lysis. Cells were lysed in NP-40 lysis buffer and biotinylated NS5A inhibitor was precipitated using Streptavidin pull-down less than 0.05 were considered significant.

Statistical analysis

Student's t-test was performed to compare data sets. P-values less than 0.05 were considered significant.

Acknowledgments

We thank Charles Rice (The Rockefeller University, New York), Takaji Wakita (National Institutes of Infectious Diseases, Tokyo), Darius Moradpour (University of Lausanne, Switzerland), Andrew Tai (University of Michigan), and Bernard Moss (NIAID) for providing reagents. We thank The University of Chicago Light Microscopy Facility director Vytais Bindokas and Christine Labno. We thank our laboratory members for their critical input and reading of the manuscript. This work is supported by NIAID (1RO1AI080703), the American Cancer Society (118676-RSG-10-059-01-MPC to G.R. and 120130-RSG-11-066-01-RMC to A.D.), Susan and David Sherman to G.R. and by American Heart Association postdoctoral fellowship to V.C.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.virol.2014.12.018.
Madan, V., et al., 2014. Inhibition of HCV replication by cyclophilin antagonists is linked to replication fitness and occurs by inhibition of membranous web formation. Gastroenterology 146 (5), 1361–1372 (e1-9).